Algorithmen auf Sequenzen

Abgabetermin: Samstag, den 1. Februar, 1000 in Moodle

Aufgabe 1 (8 Punkte)

Betrachte das Wort $t=t_1\cdots t_{17}=\text{ABANANAISANANANAS}$ sowie die zugehörige Burrows-Wheeler-Transformierte $\hat{t}=\hat{t}_1\cdots\hat{t}_{18}=\text{S$NNBSNNNAAAAAAAI}$.

- a) Konstruiere die für die Rank-Select-Datenstruktur benötigten Arrays R, R' und R'' jeweils für B_A und B_N (für Anfragen vom Typ rank₀(·)). Hierbei soll als Block-Länge s'=3 und als Super-Block-Länge s=6 verwendet werden (auch wenn dann $(s')^2 \neq s$ gilt).
- b) Beantworte die Rank-Anfragen $\operatorname{rank}_0^{B_A}(17)$ und $\operatorname{rank}_1^{B_N}(17)$ nach der in der Vorlesung vorgestellten Methode basierend auf den Arrays aus a).
- c) Konstruiere den Wavelet-Tree zu \hat{t} für t\$.
- d) Bestimme die Werte von Occ(A, 14) und Occ(N, 14) nach der in der Vorlesung vorgestellten Methode aus dem Wavelet-Tree aus c).

Hinweis: Das zu betrachtende Alphabet ist $\Sigma \cup \{\$\} = \{\$, A, B, I, N, S\}$, wobei die Ordnung auf dem Alphabet durch die Reihenfolge gegeben ist.

Aufgabe 2 (6 Punkte)

Betrachte die unorientierte Permutation $\pi = (6, 7, 3, 4, 5, 8, 9, 1, 2)$.

- a) Wende den Algorithmus aus der Vorlesung zur 2-Approximation für die minimale Reversal-Distanz auf π an. Gib dabei alle Zwischenschritte an und erläutere, warum eine bestimmte Reversion angewendet wird (bzw. nicht angewendet wird).
- b) Zeichne den Breakpoint-Graphen $G(\pi)$ für π .
- c) Wende die scharfe untere Schranke für die benötigte Anzahl von Reversionen zum Sortieren mit Reversionen aus der Vorlesung auf π bzw. den Breakpoint-Graphen $G(\pi)$ aus b) an.

Tutoraufgabe 3 (Vorbereitung bis zum 30.01.25)

Gib eine optimale Folge von Reversionen zum Sortieren der Folge (3, 4, 1, 2) an.