Algorithmen auf Sequenzen

Abgabetermin: Samstag, den 27. Januar, 1000 in Moodle

Aufgabe 1

Betrachte das Wort t = ABANANAANDANANAS.

- a) Konstruiere die Burrows-Wheeler-Transformierte \hat{t} zu t\$.
- b) Gib die zugehörige LF-Funktion für \hat{t} an.
- c) Gib die Werte $C(\cdot)$ und $Occ(\cdot, \cdot)$ an.
- d) Suche nach $s={\rm NANA}$ im FM-Index für t mit Hilfe des in der Vorlesung angegebenen Algorithmus für die Rückwärtssuche im FM-Index.

Es gilt A < B < D < N < S.

Aufgabe 2

Sei $t \in \Sigma^*$ ein Text und $k \in \mathbb{N}$. Wie kann in Zeit O(|t|) festgestellt werden, wie viele verschiedene Teilstrings der Länge k in t enthalten sind? Gib hierzu einen Algorithmus in Pseudo-Code an.