Institut für Informatik Praktische Informatik und Bioinformatik Prof. Dr. Caroline Friedel Michael Kluge, Markus Joppich

Übungen zur Algorithmischen Bioinformatik II

Blatt 6

Abgabetermin: Donnerstag, 07.12.2017, vor Beginn der Vorlesung

1. Aufgabe:

Beweisen oder widerlegen Sie: Ein optimales mehrfaches Sequenzen-Alignment bezüglich des Sumof-Pair-Maßes induziert mindestens ein optimales paarweises Sequenzen-Alignment.

2. Aufgabe (Bonus-Aufgabe):

Betrachten Sie folgende Sequenzen $s_1 = CGAA$, $s_2 = CAGTGA$, $s_3 = CAATG$ und $s_4 = CGGATT$. Der optimale Abstand für die paarweise Sequenzen-Alignments ist rechts angegeben. Hierbei gilt w(a,b) = 1 und w(a,a) = 0 für alle $a \neq b \in \overline{\Sigma}$. Konstruieren Sie für diese Sequenzen ein mehrfaches Sequenzen-Alignment mit Hilfe der Center-Star-Methode.

d	s_1	s_2	s_3	s_4
s_1	0	3	3	3
s_2	3	0	2	4
s_3	3	2	0	3
s_4	3	4	3	0

3. Aufgabe (Bonus-Aufgabe):

Sei $S = \{s_1, \ldots, s_k\} \subseteq \Sigma^*$ und M(i) definiert wie in Notation 6.41. Dabei sei ohne Beschränkung der Allgemeinheit $M := M(1) \leq \cdots \leq M(k)$.

Zeigen Sie, dass $M(\lfloor \frac{k+1}{2} \rfloor) \leq 3M$.

Hinweis: Die Beziehung $\frac{1}{k} \sum_{i=1}^{k} M(i) < 2M$ kann hilfreich sein (siehe Beweis von Lemma 6.42).

Lemma 6.42 und 6.50 dürfen allerdings nicht direkt verwendet werden.