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HuRI [Luck,... Vidal, Roth, Calderwood, Nature, Apr 16, 2020]

Globalinsightsinto cellular organization and genome function require
comprehensive understanding of the interactome networks that mediate genotype-
phenotype relationships'?. Here we present a human ‘all-by-all’ reference i actome
map of human binary proteininteractions, or ‘HuRI. With approximat¢
protein—-proteininteractions, HuRI has approximate JS many suc
interactions as there are high-quality curated interactionstrom small-scale studies.
Theintegration of HuRI wi a ox ataenables
cellular function to be studied witr jological or patiiological cellular
contexts. We demonstrate the utility of HuRI in identi the specific subcellular
roles of protein—proteininteractions. Infe onetworks reveal general
principles for the formation of cellulariontext-specifictfunctions and elucidate

hat might underlie tissue-specific phenotypes of

Mendelian diseases.HURTIs a systematic proteome-wide reference that links genomic

variation to phenotypic outcomes.
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Lit-BM (2014)

A Proteome-Scale Map
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Lit-BM (2014)
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Lit-BU (2014) )

S ——

Summary

Just as reference genome sequences revolutionized human
genetics, reference maps of interactome networks will be critical
to fully understand genotype elationships. Here, we

P the literature in the last few decades. While

currently available information is highly biased and-e Qvers a
relatively small portion of the proteome, our systematic map
appears strikingly more homogeneous, revealing-a—sreader’

_ _ Highlights
human interactome network than currently appreciated. The
map also uncovers significant interconnectivity between known . Network maf of 14,000 high-quality binary human protein-
and candidate cancer gene products, providing unbiased protein interactions

evidence for an expanded functional cancer landscape, while

+ Uniform coverage)of the interactome space overlooked by

deme ating-iow high-quality interactome models will help cFes
‘connect the dots) of the genomic revolution.
- This map allows detection of functional relationship

previous knowledge

- Unbiased getwork-based evidence fbr an expanded cancer

landscape
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HuRlI (2020)
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Fig.1|Generationofareference interactome map using a panel ofbinary
assays. a, Overview of HuRI generation. b, Schematic of the Y2H assay versions.
¢, Experimental validation. Lit-BM, literature-curated binary PPIs with multiple
evidence; RRS, random protein pairs. Error bars are 68.3% Bayesian confidence
interval. MAPPIT: n=2,281,383 and 475; GPCA:n=1,639,382 and 465 (from left
toright).d, Number of PPIs detected with each additional screen. e, Fraction of
directcontact pairsamong five PPl networks. Error barisstandard error of
proportion.n=121,410,1,169,584 and 1,211 PPIs (fromleft to right). f, Number
of PPIsidentified over time fromscreening at the Center for Cancer Systems
Biology (CCSB) and Lit-BM.
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To map the reference interactome, we performed nine screens of
Spacelll, followed by pairwise verification by quadruplicate retesting
and sequence confirmation. PPIs verified by two orthogonal binary
PPI assays, MAPPIT" and GPCA?°, were recovered at rates on par with
high-confidencebinary PPIs fromtheliterature (each having atleast two
pieces of experimental evidence, with at least one from abinary assay
type; Lit-BM) over alarge range of score thresholds (Fig. 1c, Extended
DataFig.1g, h, Supplementary Table 8). Each additional screenidenti-
fied new PPIs and proteins, with the largest gains obtained by switching
assay versions (Fig. 1d, Extended Data Fig. 1i). The dataset, versioned
HI-11I-20 (Human Interactome obtained from screening Spacelll, pub-
lishedin2020), contains 52,569 verified PPls involving 8,275 proteins
(Supplementary Table 9). Although our knowledge of the interactome
remains incomplete, we refer to HI-11I-20 as a reference map of the
humanbinary proteininteractome (HuRI) given its systematic nature,
extensive coverage, and scale.
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Fig.2| Complementary functionalrelationshipsin HuRIbetween genes.
a, EnrichmentofHuRIand its profile similarity network (PSN) for protein pairs
withshared functionalannotation,showing meanand 95%interval of100

random networks. b, Functional modulesin HuRIandits PSNandin previously

published interactome maps from CCSB.
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Fig.3|Unbiased proteome coverage of HuRIreveals uncharted network
neighbourhoods of disease-related genes. a, Heat maps of PPl counts,
proteinsordered by number of publications. b, Fraction of HURI PPIsin Lit-BM,
forincreasing values of the minimumnumber of publications per protein. Error
barisstandarderrorofproportion,n=52,569 to170 PPIs (from left toright).c,
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mentha: a resource for browsing
integrated protein-interaction networks

To the Editor: Systems-level approaches require access to compre-
hensive genome-wide and proteome-wide databases. A compre-
hensive resource that archives all published protein-protein interac-
tions (PPIs) is not available. In fact, primary PPI databases capture
only a fraction of published data.

This dispersion of information has motivated projects such as
the Agile Protein Interaction DataAnalyzer (APID), the Protein
Interaction Network Analysis (PINA) platform, iRefWeb,
Michigan Molecular Interactions (MiMI) and the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING), which offer
wider coverage of PPI information by integrating heterogeneously
curated data. The difficulty of combining annotations from het-
erogeneous efforts, however, consistently hampers the integration
of data extracted from databases that adopt different curation poli-
cies; one consequence of laborious integration procedures is that
updates are infrequent.

reliability score can be used to filter the PPl network of interest from

Homo sapiens
B Proteins 14,667
Interactions 135,097
Avg. neighbors 6.31
Avg. path length 4.10

Mus musculus

Proteins 6,108
Interactions 14,688
Avg. neighbors 4.87
% Avg. path length 4.19

Proteins
Interactions 36,135
Avg. neighbors
Avg. path length

Figure 1 | mentha’s interactomes. The gray graph illustrates mentha’s “All"
interactome. The colored graphs report the interactomes of Homo sapiens
and three model organisms. The insets report the number of proteins,
interactions and some topological characteristics. mentha offers graph
analysis tools to extract subnetworks and paths, optionally identifying
enzymatic interactions.
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HuRI: Data Availability

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2188-X.
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HuRIl Networks -
Luck et al. (2020)

Description:

This set of networks corresponds
to all human reference
interactome (HuRlI)-related
networks generated and analyzed
in Luck et al. (2020).

The network labelled HuRI
corresponds to the full HuRI
network.

The network labelled HI_union
corresponds to the union of all
PPIs identified in systematic
screens at the Center for Cancer
Systems Biology (CCSB) and
includes HuRI.

The network named CORUM_HI_BP
corresponds to the protein
complexes integrated with HuRI
and BioPlex.

The network labelled EV_network
corresponds to the network shown
in Fig. 4b.

All networks with a tissue name
not preceded by CG correspond to
inferred tissue PPl networks from
HuRI around tissue-preferentially
expressed genes/proteins (Fig. 5¢c).

Docs

Network Name

esophagus_muscularis
CG_whole_blood
heart_atrial_appendage
heart_left_ventricle
kidney_cortex

liver

lung
minor_salivary_gland
muscle_skeletal
nerve_tibial

ovary

pancreas
CG_brain_basal_ganglia
pituitary

prostate

HuRlI

Total Items: 49

Report Bug

fe e Be Be Be e B Be Be Be Be Lo Lo B Re Qe
FERETRERIERRERREUERE

[

Contact Us

FAQ

Networks in set HuURI Networks - Luck et al. (2020)

Ref.

Disease

Tissue

Nodes

64

36

418

735

713

988

175

329

1260

123

125

782

659

1125

153

8275

Edges

62
36
452
836
859
1296
162
351
1728
117
112
935
888
1512
139

52569



STRING

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S,
@ STR' N G Huerta-Cepas J, Simonovic M, Doncheva NT, Morris
JH, Bork P, Jensen LJ, von Mering C.
STRING v11: protein-protein association networks
with increased coverage, supporting functional
discovery in genome-wide experimental datasets.
Nucleic Acids Res. 2019 Jan; 47:D607-613.

Welcome to STRING

Protein-Protein Interaction Networks

Functional Enrichment Analysis

ORGANISMS PROTEINS | INTERACTIONS

5090 | 24.6 mio | >2000 mio

SEARCH

L________________________________________________________________________________________________________________________________________________________________________}
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STRING

5 STRING

Search

Some of the files below can be made smaller (prior to download),

by restricting the data to one organism of interest. Choose an organism here:

File

protein.links.v11.0.txt.gz (43.3 Gb)

protein.links.detailed.v11.0.txt.gz (67.6 Gb)

protein.links.full.v11.0.txt.gz (72.5 Gb)

protein.actions.v11.0.txt.gz (12.9 Gb)

COG.links.v11.0.txt.gz (288.3 Mb)

COG.links.detailed.v11.0.txt.gz (366.7 Mb)

choose an organism

Description

protein network data (scored links between proteins)
protein network data (incl. subscores per channel)

protein network data (incl. distinction: direct vs. interologs)
interaction types for protein links

association scores between orthologous groups

association scores (incl. subscores per channel)

Download

Help My Data

Access

11

L~
i

L~
ﬂi

L M Ralf Zimmer, LMU Institut fir Informatik, Lehrstuhl flr Praktische Informatik und Bioinformatik,
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STRING

File

protein.info.v11.0.txt.gz (571.6 Mb)

protein.sequences.v11.0.fa.gz (5.5 Gb)

COG.mappings.v11.0.txt.gz (381.4 Mb)

species.mappings.v11.0.txt.gz (45.1 Mb)

species.v11.0.txt (352.9 Kb)

species.tree.v11.0.txt (111.6 Kb)

protein.aliases.v11.0.txt.gz (1.7 Gb)

protein.homology.v11.0.txt.gz (8.3 Gb)

protein.homology_best.v11.0.txt.gz (286.7 Gb)

clusters.proteins.v11.0.txt.gz (5.6 Gb)

clusters.info.v11.0.txt.gz (103.2 Mb)

Description

list of STRING proteins incl. their display names and descriptions
sequences of the proteins in STRING (can be used as a blast db)
orthologous groups (COGs,NOGs,KOGs,...) and their proteins
presence / absence of orthologous groups in species

organisms in STRING

STRING tree of species

aliases for STRING proteins: locus names, accessions, descriptions...

SW alignment scores between proteins within each STRING species

SW alignment scores for best hits between proteins across species

hierarchical STRING clusters and their proteins

hierarchical STRING clusters annotations

Access

L)
i

L) L)
ii

L)
i

L) L~
ii

L)
i

L) L) L) L)

clusters.tree.v11.0.txt.gz (16.3 Mb) hierarchical STRING clusters tree (represented as child-parent relationship)

L~
i

mapping_files (download directory)

LM u Ralf Zimmer, LMU Institut fir Informatik, Lehrstuhl fir Praktische Informatik und Bioinformatik, S$S52020: Computational Systems Biology (CSB2020) 18
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STRING

File Description

database.schema.v11.0.pdf (121.8 Kb) STRING database schema

items_schema.v11.0.sql.gz (13 Gb) full database, part I: the players (proteins, species, COGs,...)
network_schema.v11.0.sql.gz (82.3 Gb) full database, part II: the networks (nodes, edges, scores,...)
evidence_schema.v11.0.sql.gz (13.2 Gb) full database, part llI: interaction evidence (but: excluding license-restricted data)
homology_schema.v11.0.sql.gz (2700 Gb) full database, part IV: homology data (all-against-all SIMAP similarity searches)
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COVID-19 Simulations

nature

NEWS FEATURE - 02 APRIL 2020 - CORRECTION 03 APRIL 2020

Special report: The simulations driving
the world’sresponse to COVID-19

How epidemiologists rushed to model the coronavirus pandemic.




COVID-19 Simulations

SIMULATION SHOCK

A model by Imperial College London in mid-March
predicted a total of more than 500,000 UK deaths from
COVID-19, and more than 2.2 million in the United States
if no action was taken to stop the virus spreading in
those countries.

== United Kingdom == United States

1. Ferguson,N.M.etal. Preprint at Spiral https://doi.org/10.25561
/77482 (2020).

Deaths per day per
100,000 population

2. Klepac, P. et al. Preprint at medRxiv https://doi.org/10.1101
/2020.02.16.20023754 (2020).

1 | |

T T
Mar Apr May Jun Jul Aug Sep
2020 3. Ferguson,N. M. et al. Nature 437,209-214 (2005).

\ natl“ e PubMed Article Google Scholar

4. Ferguson,N.M.etal. Nature 442,448-452(2006).

PubMed Article Google Scholar
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COVID-19 Simulations

Coronavirus models: the basics

Many of the models simulating how diseases spread are unique to individual
academic groups that have been developing them for years. But the
mathematical principles are similar. They are based around trying to
understand how people move between three main states, and how quickly:
individuals are either susceptible (S) to the virus; have become infected (I);
and then either recover (R) or die. The R group is presumed to be immune to
the virus, so can no longer pass on the infection. People with natural
immunity would also belong to this group.

The simplest SIR models make basic assumptions, such as that everyone has
the same chance of catching the virus from an infected person because the
population is perfectly and evenly mixed, and that people with the disease are
all equally infectious until they die or recover. More-advanced models, which
make the quantitative predictions policymakers need during an emerging
pandemic, subdivide people into smaller groups — by age, sex, health status,
employment, number of contacts, and so on — to set who meets whom, when
and in which places (see ‘Measuring social mixing’).
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COVID-19 Simulations

MEASURING SOCIAL MIXING

A model from the London School of Hygiene and
Tropical Medicine, UK, lays out the average number of
social contacts per day in China in the absence of
virus-containment measures, by age group and location.
This feeds simulations of how quickly a virus spreads.

Mean number of contacts per day

Age of contact (years)
S
o

O 10 20 30 40 50 60 70 80
Age of individual (years)
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COVID-19 Simulations
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COVID-19 Simulations
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COVID-19 Simulations

Which model to choose?

The Imperial team has used both agent-based and equation-based models in
this pandemic. The 16 March simulations that the team ran to inform the UK
government’s COVID-19 response used an agent-based model builtin 2005 to
see what would happen in Thailand if HSN1 avian flu mutated to a version that
could spread easily between people?. (In 2006, the same model was used to
study how the United Kingdom and the United States might mitigate the
impact of a lethal flu pandemic*.) Ferguson told Nature in 2005 that collecting
detailed data on Thailand’s population was harder than writing the
programming code for the model. That code was not released when his team’s
projections on the coronavirus pandemic were first made public, but the team
is working with Microsoft to tidy up the code and make it available, Ferguson
says.
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COVID-19 Simulations

On 26 March, Ferguson and his team released global projections of the impact
of COVID-19 that uses the simpler equation-based approach’. It divides
peopleinto four groups: S, E, | and R, where ‘E’ refers to those who have been
exposed, but who are not yet infectious. “They give broadly similar overall
numbers,” says epidemiologist Azra Ghani, who is also in the Imperial group.
For instance, the global projections suggest that, had the United States taken
no action against the virus, it would have seen 2.18 million deaths. By
comparison, the earlier agent-based simulation, run using the same
assumptions about mortality rate and reproduction number, estimated 2.2
million US deaths’.

The different kinds of model have their own strengths and weaknesses, says
Vittoria Colizza, amodeller at the Pierre Louis Institute of Epidemiology and
Public Health in Paris, who is advising the French government during the
current emergency. “It depends on the question you want to ask,” she says.
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COVID-19 Simulations

LOCKDOWNS KEEP INFECTIONS AT BAY

UK interventions reduced the virus'’s effective
reproduction number — the average number of
people an infected person passes the disease to
— from almost four to around one, a model from
Imperial College London says.

A: Self-isolation B: Social distancing €: School closure
D: Public events banned and complete lockdown

w b

1.... Credible intervals™:
W50% #Z95%

Time-varying reproduction
number (R)*

- ——————

February March
2020

*Bayesian statistics: interval within which unobserved parameter falls,
with particular probability.

tR,: average number of infections, at time t, per infected individual over
the course of their infection. If R, is maintained at <1, new infections
decrease, resulting in control of the epidemic.

onature
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COVID-19 Simulations
A SECOND WAVE

In the United States, implementing measures to
contain the virus could stop people with COVID-19
from immediately overwhelming the country’s
critical-care hospital-bed capacity, a simulation from
Imperial College London suggests. But a second wave
of the pandemic might be expected later in the year.
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== Do nothing

== Case isolation, household quarantine
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COVID-19 Simulations
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SARS Proteomics (Nature, May 14, 2020)
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Proteomics of SARS-CoV-2-infected host
cellsreveals therapy targets
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Anovel coronavirus was recently discovered and termed SARS-CoV-2. Human
infection can cause coronavirus disease 2019 (COVID-19), which has been rapidly
spreading around the globe'?. SARS-CoV-2 shows some similarities to other
coronaviruses. However, treatment options and a cellular understanding of
SARS-CoV-2infection are lacking. Here we identify the host cell pathways modulated
by SARS-CoV-2infection and show that inhibition of these pathways prevent viral
replication in human cells. We established a human cell culture model for infection
with SARS-CoV-2 clinical isolate. Employing this system, we determined the
SARS-CoV-2infection profile by translatome® and proteome proteomics at different
times after infection. These analyses revealed that SARS-CoV-2 reshapes central
cellular pathways, such as translation, splicing, carbon metabolism and nucleic acid
metabolism. Small molecule inhibitors targeting these pathways prevented viral
replicationin cells. Our results reveal the cellular infection profile of SARS-CoV-2 and
led to the identification of drugs inhibiting viral replication. We anticipate our results
toguide efforts to understand the molecular mechanisms underlying host cell
modulation upon SARS-CoV-2infection. Furthermore, our findings provide insight
for the development of therapy options for COVID-19.

L M u Ralf Zimmer, LMU Institut fir Informatik, Lehrstuhl fir Praktische Informatik und Bioinformatik, S$S52020: Computational Systems Biology (CSB2020) 31




SARS Proteomics (Nature, May 14, 2020)

Article

Proteomics of SARS-CoV-2-infected host
cellsreveals therapy targets

https://doi.org/10.1038/s41586-020-2332-7  Denisa Bojkova'’, Kevin Klann?’, Benjamin Koch®’, Marek Widera', David Krause?,
H 14 13 H - 14 +H R ’h 25604
Received: 27 February 2020 Sandra Ciesek™, Jindrich Cinatl'>* & Christian Miinch

Accepted: 6 May 2020
Published online: 14 May 2020

Anovel coronavirus was recently discovered and termed SARS-CoV-2. Human
infection can cause coronavirus disease 2019 (COVID-19), which has been rapidly

1o other

1ding of
Received Accepted Published ways modulated

‘prevent viral

27 February 2020 06 May 2020 14 May 2020 el forinfection

nedthe
SARS-CoV-2infection profile by translatome® and proteome proteomics at different
times after infection. These analyses revealed that SARS-CoV-2 reshapes central
cellular pathways, such as translation, splicing, carbon metabolism and nucleic acid
metabolism. Small molecule inhibitors targeting these pathways prevented viral
replicationin cells. Our results reveal the cellular infection profile of SARS-CoV-2 and
led to the identification of drugs inhibiting viral replication. We anticipate our results
toguide efforts to understand the molecular mechanisms underlying host cell
modulation upon SARS-CoV-2infection. Furthermore, our findings provide insight
for the development of therapy options for COVID-19.

L M u Ralf Zimmer, LMU Institut fir Informatik, Lehrstuhl fir Praktische Informatik und Bioinformatik, S$S52020: Computational Systems Biology (CSB2020) 32 I i




SARS Proteomics (Nature, May 14, 2020)
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SARS Proteomics (Mol. Cell, Feb 20, 2020)
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SARS Proteomics (Mol. Cell, Feb 20, 2020)
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infection can cause coronavirus disease 2019 (COVID-19), which has been rapidly
spreading around the globe'?. SARS-CoV-2 shows some similarities to other
coronaviruses. However, treatment options and a cellular understanding of
SARS-CoV-2infection are lacking. Here we identify the host cell pathways modulated
by SARS-CoV-2infection and show that inhibition of these pathways prevent viral
replication in human cells. We established a human cell culture model for infection
with SARS-CoV-2 clinical isolate. Employing this system, we determined the
SARS-CoV-2infection profile by translatome® and proteome proteomics at different
times after infection. These analyses revealed that SARS-CoV-2 reshapes central
cellular pathways, such as translation, splicing, carbon metabolism and nucleic acid
metabolism. Small molecule inhibitors targeting these pathways prevented viral
replicationin cells. Our results reveal the cellular infection profile of SARS-CoV-2 and
led to the identification of drugs inhibiting viral replication. We anticipate our results
toguide efforts to understand the molecular mechanisms underlying host cell
modulation upon SARS-CoV-2infection. Furthermore, our findings provide insight
for the development of therapy options for COVID-19.
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SARS Proteomics

Abstract

A novel coronavirus was recently discovered and termed SARS-CoV-2.
Human infection can cause coronavirus disease 2019 (COVID-19), which
has been rapidly spreading around the globel2. SARS-CoV-2 shows some
similarities to other coronaviruses. However, treatment options and a
cellular understanding of SARS-CoV-2 infection are lacking. Here we
identify the host cell pathways modulated by SARS-CoV-2 infection and
show that inhibition of these pathways prevent viral replication in human
cells. We established a human cell culture model for infection with SARS-
CoV-2clinical isolate. Employing this system, we determined the SARS-
CoV-2infection profile by translatome3 and proteome proteomics at
different times after infection. These analyses revealed that SARS-CoV-2
reshapes central cellular pathways, such as translation, splicing, carbon
metabolism and nucleic acid metabolism. Small molecule inhibitors
targeting these pathways prevented viral replication in cells. Our results
reveal the cellular infection profile of SARS-CoV-2 and led to the
identification of drugs inhibiting viral replication. We anticipate our
results to guide efforts to understand the molecular mechanisms
underlying host cell modulation upon SARS-CoV-2 infection.
Furthermore, our findings provide insight for the development of therapy
options for COVID-19.
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SARS Proteomics
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SARS Proteomics

Fig.3|SARS-CoV-2infection profilingreveals cellular pathways essential
forreplication. a, Patterns of proteinlevels across all samples. Shown are
proteins tested significant (two-sided, unpaired t-test with equal variance
assumed, P<0.05,n=3)inatleastoneinfected samplecomparedto
corresponding control. Datawas standardized using Z scoring before row-wise
clustering and plotting. b, Reactome pathway analysis of protein network
created from clusterll (a, see Table S4). Pathway results are shownwith number
of proteins foundindataset and computed FDR for pathway enrichment.

¢, Functionalinteraction network of proteinsfound annotated to carbon
metabolismin Reactome pathway analysis. Linesindicate functional
interaction.d, e, Antiviralassay showinginhibition of viral replicationin
dependency of pladienolide B (d, n=3) and 2-deoxy-glucose (e, n=23)
concentration. Each data pointindicates abiological replicateandredline
shows dose response curve fit. R?and IC50 values were computed from the
curvefitands.d.of IC50isindicatedinbrackets. Allnnumbersrepresent
independentbiological samples.
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SARS Proteomics: Concept
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TMT data: Methods

Mass spectrometry data analysis
Raw files were analyzed using Proteome Discoverer (PD) 2.4 software
(ThermoFisher Scientific). Spectrawere selected using default settings
and database searches performed using SequestHT node in PD. Data-
base searches were performed against trypsin digested Homo Sapiens
SwissProt database, SARS-CoV-2 database (Uniprot pre-release) and
FASTA files of common contaminants (“contaminants.fasta” provided
with MaxQuant) for quality control. Fixed modifications were set as
TMT6 at the N-terminus and carbamidomethyl at cysteine residues.
One search node was set up to search with TMT6 (K) and methionine
oxidation as static modifications to search for light peptides and one
searchnodewassetupwith TMT6+K8 (K, +237.177), ArglO (R, +10.008)
and methionine oxidation as static modifications to identify heavy
peptides. Searches were performed using Sequest HT. After search,
posterior error probabilities were calculated and PSMs filtered using
Percolator using default settings. Consensus Workflow for reporter
ion quantification was performed with default settings, except the
minimal signal-to-noise ratio was set to 5. Results were then exported
to Excelfiles for further processing. For proteome quantification all
PSMs were summed intensity normalized, followed by IRS*>and TMM?*
normalization and peptides corresponding to a given UniProt Acces-
sion were summed including all modification states.
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TMT data: Methods

Mass spectrometry data analysis

For translatome measurements, Excel files were processed in Python,
as previously described®. Python 3.6 was used together with the follow-
ing packages: pandas 0.23.4**, numpy 1.15.4%, scipy 1.3.0. Excel files with
normalized PSM datawere read inand each channelwas normalized to
the lowest channel based ontotalintensity. For each peptide sequence,
all possible modificationstates containing a heavy label were extracted
and the intensities for each channel were averaged between all modi-
fied peptides. Baseline subtraction was performed by subtracting the
measured intensities for the non-SILAC-labeled sample fromall other
values.Negative intensities were treated as zero. The heavy labelincor-
porationattheproteinlevel was calculated by summingtheintensities
of all peptide sequences belonging to one unique protein accession.
These values were combined with the standard protein output of PD
2.4 toadd annotation data to the master protein accessions.
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TMT data: Methods

Mass spectrometry data analysis

Hierarchical clustering and profile comparison
Hierarchicalclusteranalysisand comparisonwithviral protein profilesforall
sampleswas performed using Perseus® software package (version1.6.5.0)
after centeringand scaling of data (Z scores).K-means pre-processing was
performedwithacluster numberof12and amaximumof1Oiterations. For
the comparison of profiles, the viral profiles were Z scored and averaged
to generate reference profile. Profiles of all proteins were compared to
the reference (Pearson), distances and False discovery rates computed.

Network analysis

For network analysis, Cytoscape 3.7.1 software was used with BINGO
3.0.3* plugin for GO term analysis, EnrichmentMap 3.1.0*” and Reac-
tomeFI1 6.1.0*°. For GO-term analyses, gene sets were extracted from
data as indicated using fold change and significance cut-offs.

Statistical analysis

Significance was, unless stated otherwise, tested using unpaired
two-sided students t-tests with equal variance assumed. Statistical
analysis was performed using OriginPro 2020 analysis software. For
network and GO analysis all statistical computations were performed
by the corresponding packages.

Data availability

The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortiumviathe PRIDE* partner repository with
the datasetidentifier PXDO17710. We furthermore created awebpage
L M u (http://corona.papers.biochem2.com/) visualizing the presented data
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Decreased during SARS-CoV-2 infection
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Decreased during SARS-CoV-2 infection

Post-translational protein phosphorylation .
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Extended DataFig.4|Network of proteinsdecreased during SARS-CoV-2
infection.a, Proteinsbelonging to cluster linFig. 3awere used for functional
interaction network creation. Lines indicate functional interactions. The
network was created using the ReactomeFlpluginincytoscape, proteinnames

addedinthepluginand the network adjusted by the yFiles Layout algorithm.
b, ReactomeFI network analysis of proteins downregulated in total protein
levels. Circlesize represents number of proteins found in the pathway, colour
shows FDR for enrichment.
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Unfolded protein binding
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