Algorithmische Bioinformatik I

Hinweise zur O-Notation

Für die Bearbeitung von Aufgaben zu den Landauschen Symbolen (O-Nottation) ist es wichtig, sich an die gegebene Definition 1.25 aus Vorlesung bzw. Skript zu halten. Insbesondere sind bei Begründungen zu O und Ω (also auch bei Θ) die in der Definition angegebenen Konstanten c und n_0 explizit anzugeben. Wir geben hier zwei Beispiele an, wie man Lösungen zu solchen Aufgaben aufschreiben sollte. Dies ist insbesondere im Hinblick auf die Klausur wichtig.

Beh. 1: Für
$$f(n) = n^2 - 8n + 9$$
 gilt $f(n) \in \Theta(n^2)$

Zu zeigen ist $f(n) \in O(n^2)$ und $f(n) \in \Omega(n^2)$.

 $,f(n)\in O(n^2)$ ": Es gilt

$$f(n) = n^2 - 8n + 9$$

$$da - 8n + 9 \le 0 \text{ für } n \ge 2$$

$$< n^2$$

Somit gilt $f(n) \le c \cdot n^2$ für $n \ge n_0$ mit c = 1 und $n_0 = 2$.

 $,f(n)\in\Omega(n^2)$ ": Es gilt

$$f(n) = n^2 - 8n + 9$$

$$\operatorname{da} 9 \ge 0 \text{ für } n \ge 2$$

$$\ge n^2 - 8n$$

$$\operatorname{da} -8n \ge -\frac{1}{2}n^2 \text{ für } n \ge 16$$

$$\ge n^2 - \frac{1}{2}n^2$$

$$\ge \frac{1}{2}n^2$$

Somit gilt $f(n) \ge c \cdot n^2$ für $n \ge n_0$ mit $c = \frac{1}{2}$ und $n_0 = 16 = \max\{2, 16\}$.

Beh. 2: Für $f(n) = \sum_{i=1}^{n} i$ gilt $f(n) \in \Theta(n^2)$

Zu zeigen ist $f(n) \in O(n^2)$ und $f(n) \in \Omega(n^2)$.

 $,f(n) \in O(n^2)$ ": Es gilt

$$f(n) = \sum_{i=1}^{n} i$$

$$\operatorname{da} i \leq n \text{ für } n \geq 1$$

$$\leq \sum_{i=1}^{n} n$$

$$= n^{2}$$

Somit gilt $f(n) \le c \cdot n^2$ für $n \ge n_0$ mit c = 1 und $n_0 = 1$.

 $,f(n)\in\Omega(n^2)$ ": Es gilt

$$f(n) = \sum_{i=1}^{n} i$$

$$\operatorname{da} 1 \leq \left\lceil \frac{n}{2} \right\rceil \text{ für } n \geq 1$$

$$\geq \sum_{i=\left\lceil \frac{n}{2} \right\rceil}^{n} i$$

$$\operatorname{da} i \geq \left\lceil \frac{n}{2} \right\rceil$$

$$\geq \sum_{i=\left\lceil \frac{n}{2} \right\rceil}^{n} \left\lceil \frac{n}{2} \right\rceil$$

$$= \left(n - \left\lceil \frac{n}{2} \right\rceil + 1\right) \cdot \left\lceil \frac{n}{2} \right\rceil$$

$$= \left(\left\lfloor \frac{n}{2} \right\rfloor + 1\right) \cdot \left\lceil \frac{n}{2} \right\rceil$$

$$\operatorname{da} \left\lceil \frac{n}{2} \right\rceil \geq \frac{n}{2} \text{ für } n \geq 1$$

$$= \left(\left\lfloor \frac{n}{2} \right\rfloor + 1\right) \cdot \frac{n}{2}$$

$$\operatorname{da} \left\lfloor \frac{n}{2} \right\rfloor + 1 \geq \frac{n}{2} \text{ für } n \geq 1$$

$$= \frac{n}{2} \cdot \frac{n}{2}$$

$$= \frac{1}{4} \cdot n^{2}$$

Somit gilt $f(n) \ge c \cdot n^2$ für $n \ge n_0$ mit $c = \frac{1}{4}$ und $n_0 = 1$.