Formale Sprachen und Komplexität, SS 18, Prof. Dr. Volker Heun

Übungsblatt 1

Abgabe: bis Mo. 23.04.2018 8 Uhr

Prof. Dr. Volker Heun

Formale Sprachen und Komplexität, SS 18 Übungsblatt 1

Abgabe: bis Mo. 23.04.2018 8 Uhr

Nach Bearbeitung dieses Übungsblattes sollten Sie:

	Check
Die Definitionen von L^+ , KL , und L^* für Sprachen K und L kennen, und auf	
Beispiele anwenden können.	
Die Definitionen von R^+ , R^* für Relationen R kennen, und auf Beispiele anwenden	
können.	
Relationen mit einfachen Eigenschaften auf \mathbb{N}_0 angeben können.	
Den Index einer Relation kennen und bestimmen können.	

Diese Ziele sind wichtige Hinweise für die Klausur!

Aufgabe 1-1 schriftlich bearbeiten Formale Sprachen

Sei $\Sigma = \{a, b, c\}$ und $L = \{ab, bc\}$, also eine formale Sprache über dem Alphabet Σ . Tragen Sie in die folgende Tabelle ein, ob jeweils \in oder \notin gilt.

	L	L^+	L^*	$L^*\{c\}^+$
ε				
ab				
abc				
bcab				
bcabbc				

Aufgabe 1-2 schriftlich bearbeiten

Relationen

Hinweis: Eine Definition von R^* und R^+ finden Sie unter

https://de.wikipedia.org/wiki/Transitive_Hülle_(Relation), oder in den Mathematischen Grundlagen in "Theoretische Informatik - kurz gefasst".

Sei R die binäre Relation auf der Menge \mathbb{N} der natürlichen Zahlen mit $R = \{(n, 2 \cdot n) \mid n \in \mathbb{N}\}$. Tragen Sie in die folgende Tabelle ein, ob jeweils \in oder \notin gilt.

	R	R^+	R^*
(3,3)			
(3, 6)			
(3,3) $(3,6)$ $(3,18)$			
(3, 24)			

Aufgabe 1-3 Formale Sprachen und *-Operator

Sei Σ ein Alphabet und $L\subseteq \Sigma^*$ eine formale Sprache. Zeigen Sie:

- a) $L^*L^* = L^*$.
- b) $(L^*)^* = L^*$.

Aufgabe 1-4 Relationen und ⁺-Operator

- a) Geben Sie eine Relation R auf der Menge \mathbb{N} der natürlichen Zahlen an, so dass $R^+ \neq R$ und R^+ die <-Relation auf \mathbb{N} ist.
- b) Welche Relation ist R^* für das von Ihnen definierte R?

Aufgabe 1-5 Äquivalenzrelationen

Gegeben sei für jedes $m \in \mathbb{N} \setminus \{0\}$ die Relation

$$R_m = \{ (i,j) \mid i \in \mathbb{Z}, \ j \in \mathbb{Z}, \ i-j \text{ ist durch } m \text{ teilbar } \} \subseteq \mathbb{Z} \times \mathbb{Z}.$$

- a) Zeigen Sie, dass R_m eine Äquivalenzrelation ist.
- b) Geben Sie die Äquivalenzklassen und den Index von R_m an.

Aufgabe 1-6 schriftlich bearbeiten

Grammatiken

Sei $G=(V,\Sigma,P,S)$ die Grammatik mit $V=\{S\}$ und $\Sigma=\{a,b\}$ und $P=\{\ S\to b,\ S\to aS\ \}.$

Die Relation \Rightarrow_G ist wie in der Vorlesung definiert: Für $u, v \in (\Sigma \cup V)^*$ gilt $u \Rightarrow_G v$ genau dann wenn v aus u in einem Schritt mit Produktionen aus P ableitbar ist.

- a) Geben Sie einige Paare (u, v) aus der Relation \Rightarrow_G an.
- b) Geben Sie einige Paare (u,v) aus der Relation \Rightarrow_G^* an.
- c) Geben Sie $\{w \in (V \cup \Sigma)^* \mid S \Rightarrow_G^* w\}$ an.
- d) Geben Sie L(G) an.