Institut für Informatik Sommersemester 2017

Praktische Informatik und Bioinformatik Prof. Dr. Caroline Friedel Marie-Sophie Friedl, Michael Kluge

Übungen zur Algorithmischen Bioinformatik I

Blatt 2

Abgabetermin: Montag, 15.5.2017, 10 s.t.

1. Aufgabe (Bonus-Aufgabe):

Betrachten Sie das folgende Problem:

FIND

Eingabe: Ein sortiertes Feld $(A_1, \ldots, A_n) \in \mathbb{R}^n$ mit $A_1 < \cdots < A_n$ und ein $x \in \mathbb{R}$.

Ausgabe: Entscheide, ob es ein $i \in [1:n]$ mit $A_i = x$ gibt.

Geben Sie einen möglichst effizienten Divide-and-Conquer-Algorithmus in Pseudo-Code für dieses Problem an.

Legen Sie die Eingabegröße und die charakteristischen Operationen für die Analyse fest. Begründen Sie Ihre Entscheidung und analysieren Sie Ihren Algorithmus.

2. Aufgabe:

Geben Sie eine möglichst einfache Abschätzung mit Θ an (Beispiel: für $f(n) = 3n^2 + 2n + 1$ ist $f(n) \in \Theta(n^2)$; $f(n) \in \Theta(2 \cdot n^2 + 5n)$ ist zwar auch korrekt, hier aber nicht gesucht).

a)
$$f(n) = n \cdot 3^k$$
, b) $f(n) = \frac{n^3 - n^2 + 5}{n^3 + 4n^2 - 3n}$, c) $f(n) = 4^{\log_2(n)}$, d) $f(n) = \sum_{i=0}^{n-1} (n-i)^3$.

Hinweis: Begründung nicht vergessen.

3. Aufgabe (Bonus-Aufgabe):

Beweisen oder widerlegen Sie folgende Behauptungen. Achten Sie auf eine formal korrekte Durchführung.

- (a) $O(f) \cdot O(g) = O(f \cdot g)$, hierbei ist $O(f) \cdot O(g) := \{\hat{f} \cdot \hat{g} : \hat{f} \in O(f) \land \hat{g} \in O(g)\}$ mit $f, g, \hat{f}, \hat{g} : \mathbb{N} \to \mathbb{R}_+$ und das Gleichheitszeichen bedeutet Mengengleichheit.
- (b) Für jedes Polynom p vom Grad $k \ge 1$ gilt $\log(p(n)) \in \Theta(\log(n))$;
- (c) $f, g \in \Theta(h) \Rightarrow |f g| \in \Theta(h)$, wobei $|f g| : n \mapsto |f(n) g(n)|$;

4. Aufgabe:

Lösen Sie die folgende inhomogene lineare Rekursionsgleichung mit Hilfe des Satzes zur Lösung homogener linearer Rekursionsgleichungen endlicher Ordnung aus der Vorlesung:

$$a_n = 2a_{n-1} - a_{n-2} + 1$$
 und $a_0 = 0$, $a_1 = 1$.