a Framework for the Evaluation
of chemical Reaction Networks

written in java

by Florian Erhard, Institut fiir Informatik, Ludwig-Maximilians-Universitat Miinchen,
Amalienstrale 17, 80333 Miinchen, Germany

Contents

1 Overviewl

[2 Installation and first steps|

5 Gnuplot

6 Analysis

[7__Stochastics|

8 Examples|

(8.2 DecayingDimerizing|. oo

B.4 LacZ/LacY|

8.5 MapkBenchmarkl oo

[8.6 AutocatalyticNetworkkxamplel.o 000000

16

16

17

R Dsmts

(A FernML example|

(B FernML specifications|

[C SBML support)]

21

22

23

1 Overview

FERN is a fast, extensible and comprehensive framework for the stochastic simulation and
analysis of chemical reaction networks. A chemical reaction network is composed of several
molecular species coupled by reaction channels. The goal of stochastic simulation algorithms
(SSAs) is to simulate a trajectory of the species’ populations by a Monte Carlo Markov
Chain. Starting from a vector of initial amounts for each species, the SSA updates these
values by firing reaction channels accordingly to a distribution given by their propensities.
Additionally it calculates the time between two firings and hence provides a time scale for
the events. For a broader view about the theory of SSAs please refer to [2, 4, 8]. This guide
is intended to be a complete description of the basic FERN package. The documentation
for the Cytoscape plugin is separately available at http://www.bio.ifi.lmu.de/FERN. The
Cytoscape plugin was also adapted as a plugin to CellDesigner [13] which offers a plug-in
functionality with the recent version 4.0 beta.

2 Installation and first steps

If you do not already have Java installed on your computer (or you do not have a current
version - try to type java -version into a console), you will have to download the JDK
from http://java.sun.com/javase/downloads/index.jsp. Then you just have to follow the
installation instructions.

The installation process of FERN itself is also quite easy: Just download either the zip or the
tar.gz file from our website and unpack it to some directory. Now the basic FERN package
is ready to use. You can try it by typing either

./ start .sh examples/mm.xml 5 1,
./start_cygwin.sh examples/mm.xml 5 1 or
start . bat examples\mm.xml 5 1

into your console. Depending on your environment, choose one of start.sh, start.bat or
start_cygwin.sh for linux/unix/mac, windows or windows with cygwin, respectively. You
should get 5 lines characterizing a trajectory of a simple Michaelis-Menten kinetics network.

If you have access to gnuplot (i.e. it starts if you type gnuplot into your console), the
following line should give you a neat impression of FERN’s abilities:

./ start .sh examples/mm.xml 7 0.1 —n 25 —i,
./start_cygwin.sh examples/mm.xml 7 0.1 —n 25 —i or
start .bat examples\mm.xml 7 0.1 —n 25 —i

http://www.bio.ifi.lmu.de/FERN
http://java.sun.com/javase/downloads/index.jsp
http://www.bio.ifi.lmu.de/FERN/download

If you want to read SBML files, you have to get the newest libsbml. There you will also find
comprehensive documentation about compiling and installing libsbml. Running windows,
you simply have to download the precompiled package and copy the files of the subdirectory
bindings/java to your FERN directory. Under linux/unix, you have to compile from source
which is well documented at the libsbml website. Do not forget to set the —with-java flag
for configure and to set the LD_LIBRARY _PATH variable. Then you just have to copy the
sbmlj.jar to your FERN directory. Now the line

./ start .sh examples/mm_sbml.xml 7 0.1 —n 25 —i,
./start_cygwin.sh examples/mm_sbml.xml 7 0.1 —n 25 —i or
start .bat examples\mm_sbml.xml 7 0.1 —n 25 —i

is supposed to produce the same results as the line above.

2.1 Windows users

Since windows users are usually not familiar with a command line console, here some first
steps:

To start the console, use Start - Run (or just the search field under vista) to type

cmd

and press Enter. Now you can navigate to you FERN installation by typing

cd 7 C:\Program Files\fern”

if you unpacked FERN into that folder. Once you are within this folder, you can start FERN
by using the start.bat as described above.

2.2 Eclipse or other IDEs

If you want to use FERN with Eclipse or another IDE of your choice, you only have to
include the external jars colt, concurrent, jdom and fern in your project. Try to create a
class Test with a main method and insert following code:

Network net = new FernMLNetwork (new File (”some_net.xml”));
NetworkTools.dumpNetwork (net) ;

You should get information about the network in some_net.xml. If you have problems running
this simple test, check your java runtime environment and if necessary update it to the newest
version.

http://sbml.org/software/libsbml/
http://sbml.org/software/libsbml/docs/cpp-api/libsbml-installation.html

Another possibility is to import the src directory of the FERN package into your project.
Make sure you import the correct folder structure by checking if you have the item fern di-
rectly within your project in the Eclipse Package Explorer. If you just included colt, concur-
rent and jdom to your project, you will get compile errors in the packages fern.network.sbmil,
fern.cytoscape and fern.cellDesigner. In Eclipse, these will not affect other parts of FERN,
so you can either ignore them or alternatively include sbmlj.jar, cytoscape.jar (available with
the Cytoscape distribution, version 2.4.0. or higher) and CellDesigner.jar (get it from the
newest version of CellDesigner - at least 4.0beta) into your project. Note that for some IDEs,
compiling might fail completely if you don’t delete the affected packages or include the jars.

3 File formats

FERN introduces its own file format, FernML. The advantage to existing file formats like
SBML [I1] is its simplicity. While in SBML you can model complex biological systems,
FernML is supposed to describe just the reaction network of several molecular species. Since
FERN uses the reaction rate equations described in [2], the propensities can calculated
efficiently by a few arithmetic operations. SBML however uses MathML to store the kinetics
of a reaction and hence it is neccessary to evaluate an expression tree every time a propensity
is calculated (which is one of the essential steps of SSAs, together with the drawing of random
numbers). This is significantly slower than direct multiplication, as shown in figure . These
two formats can easily converted into each other by FERN:

Network net = new FernMLNetwork (new File (”some_net.xml”));
SBMLNetwork sbml = new SBMLNetwork (net) ;
sbml.saveToFile (new File(”some_net.sbml”’));

For converting a SBML network into a FernML network, the same holds, only Fern has to be
exchanged with SB and vice versa. But note that in this case, only FernML specific features
are saved, so a double conversion from SBML to FernML to SBML will yield a different
SBML file.

3.1 FernML

A FernML document is a XML conform file and consists of

e a list of species definitions

e and a list of reaction definitions

http://www.cytoscape.org/
http://www.systems-biology.org/cd/

SEML

FernfIL

SEML
SBEML

FernkiL
FernliL

ariginal Gillespie enhanced Gillespie Gibson-Bruck

Figure 1: Relative time for simulating the MAPK example using FernML / SBML; the
millseconds after 1000 runs are plotted for the three exact SSAs. As expected, the difference
for the original Gillespie algorithm is the largest since it needs more propensity calculations
than the other algorithms.

Each species definition has two attributes: its name and its initial amount. Each reaction
definition has the mandatory attribute kineticConstant and the optional attribute kinetic-
ConstantReversible if the reaction is reversible. Additionally, each reaction element has to
contain a <listOfReactants> and a <listOfProducts>, both consisting of species references.
A jspeciesReference> tag only contains the name of a previously defined species. For docu-
mentation purposes annotation elements can be attached to the root element and to species
and reaction branches.

For further information see the appendix.

3.2 SBML

For information about SBML see [I1] or at the website. Not each aspect of the current
version (version 2 level 3) is supported, for a complete list see the appendix.

http://www.sbml.org/

4 Framework structure

Gnuplot

Java objects

Stdout

Implementations
for various purposes

Figure 2: Structure of FERN: An application using FERN will always create Network ob-
jects, which can be instanciated by various implementations like file readers, evolution al-
gorithms or wrappers of existing network network object. Usually these are passed to a
Simulator, either one of the exact SSAs or a tau leaping procedure. A fundamental feature
of FERN is the easy way of getting information out of simulations by registering Observer
objects at the Simulator and the efficient processing of collected data.

For the simulation part of the framework there are three important interfaces / classes:

e Network: basic structure of a chemical reaction network
e Simulator: takes a network and performs a stochastic simulation

e Observer: observes certain aspects of a simulation and makes its results available

Network is an interface which can be implemented by network file readers (like FernMLNet-
work, SBMLNetwork,), wrappers (like CytoscapeNetworkWrapper) or evolution algorithms
(like AutocatalyticNetwork).

Simulator is an abstract class which provides certain functionalities for its extending classes
(which contains just the simulation algorithms - like GillespieSimple, GibsonBruckSimula-
tor) especially the observer system: You can register one to many Observer objects at the
simulator. During a simulation run, specific methods of the observer are invoked at each
step of the algorithm.

=W N =

(a4

The Observer is an abstract class which provides several useful methods for extending
classes and the abstract callback methods which are invoked by the Simulator. By different
implementations of these, Observers are able to analyze several aspects of the simulation
(e.g. changes of amounts of certain molecule species, firings of reactions). Several implemen-
tations are already available within the FERN distribution. These provide comprehensive
functionalities like handling repeated simulation runs by calculating average data whenever
it makes sense or introducing methods to pass data directly to gnuplot (please refer to the
javadoc).

So, a very elementary example of using FERN could be:

Network net = new SBMLNetwork (new File (”some_net.xml”));

Simulator sim = new GillespieEnhanced (net);

net.registerEvents (sim) ;

Observer obs = sim.addObserver (new
AmountIntervalObserver (sim,1,”X"));

sim.start (50);

System.out. println (obs);

In (1) a network is loaded from a SBML file and in (2) a simulator is created. To ensure
a proper SBML event handling, the events are registered (3) at the simulator (this is only
neccessary, if events are defined within the SBML network - if you are not sure, just register
them, it won’t hurt - if there are no events to register, no events will be registered). In (4)
an AmountIntervalObserver (which observes the molecule X repeatedly after an interval 1)
is created and registered at the simulator. (5) starts the simulation algorithm and tells it to
stop after 50 seconds of simulated time. Then (6) will print out the amount of each molecule
in the array X for the timepoints 0, 1, 2, 3,...,50.

4.1 Network

The interface Network only stores the network’s structure (together with some basic infor-

mation like species names and their initial amounts). However each network object has to

know more than that and has attached therefore three important classes as field variables:
e AmountManager: controls the amount of each molecular species during a simulation

e AnnotationManager: can store annotations for the network, its species and reactions

e PropensityCalculator: calculates propensities for reactions by some kinetic law

AmountManager

KineticConstantPropens| alculator
pensityC T CytoscapeAnnotationManager
|
|
|
SBMLPropensityCalculator “USPS” AnnotationManagerimpl FernMLAnnotationManager
|
|
|
|
winterfaces Husesn | Husese sinterfaces
PropensityCalculator . — — — — — 1 AnnotationManager

|] |

1 sinterfacew |

L Network 1

AbstractNetworkimp/ ModifierNetwork
FernMLNetwork SBMLMetwork ReversibleMetwork CatalysedNetwork
AutocatalyticNetwork CytoscapeNetworkWrapper ExtractSubNetwork

In a network, each reaction and each species is basically a number between 0 and the number
of species and reactions, respectively. So if you look for a class named Species or Reaction
you won't find any. Each piece of information about species / reactions is stored in separate

Figure 3: UML of Network related classes

arrays and not in one object for each species / reaction.

Currently, there are various implementations of the network interface (refer to table . Once

you have instantiated one of these Networks, you can:

e pass it to a Simulator object.

modify it.

In the package fern.network.modification are some implementations of the interface Network
which take an existing Network and yield a modified version of it. For example the Re-
versibleNetwork virtually creates a reverse reaction to each reaction of the original network.

pass it to an analysis algorithm.

10

save it as SBML-file (by first creating a SBMLNetwork from it)

save it as FernML-file (by first creating a FernMLNetwork from it)

FernMLNetwork

Loads Networks in FernML. Supports only simple reac-
tion rate kinetics.

SBMLNetwork

Loads Networks in SBML. Supports arbitrary rate laws
in MathML. Does not support rules, constraints or func-
tion definitions

CytoscapeNetworkWrapper

Used by the Cytoscape plugin to adapt the cytoscape
data structures to FERN and redirect function calls

CellDesignerNetworkWrapper

Used by the CellDesigner plugin to adapt the CellDe-
signer data structures to FERN and redirect function
calls

AutocatalyticNetwork

Evolves a network form some starting monomers by ag-
gregation / disaggregation reactions leading to polymers
of customizable length

Table 1: Implementations of the network interface

"*Virtually creates”’

means that the ModifierNetwork will not copy the network structure

but rather redirect calls (for more information see the javadoc).

4.2 Simulator

Each built-in simulator follows the same scheme (see also figure [4)):

e Initialize data structures

e As long as the passed SimulationController allows to go on:

— Perform one step

The SimulationController is an interface which can tell the simulator whether to go on or
not. Usually you will use the DefaultController which lets the simulation run until a given
simulated time is crossed. During one step the algorithm will fire one or more reactions.

11

Afterwards, new amounts for the reactants and products are calculated by the network’s
AmountManager and new propensities for some reactions (which depends on the algorithm)
by the PropensityCalculator (which itself needs the AmountManager to calculate these).

GillespieSimple

The direct method by Gillespie [2]

GibsonBruckSimulator

The next-reaction method by Gibson and Bruck [3]

GillespieEnhanced Uses dependency graphs to improve the runtime of the
original Gillespie algorithm
TaulLeaping Tau-leaping algorithm. The error is bounded by the sum

AbsoluteBoundSimulator

of all propensity functions [§]

TauLeaping
RelativeBoundSimulator

Tau-leaping algorithm. The error is bounded by the
relative change in the individual propensity functions

8]

TauLeaping
SpeciesPopulationBoundSimulator

Tau-leaping algorithm. The error is bounded by the
relative changes in the molecular populations [§]

HybridMaximalTimeStep

Maximal time step method by Puchalka [12]. Automatic
paritioning into slow and fast reactions, which are fired
according to an exact and tau leaping method, respec-
tively.

Table 2: Included simulation algorithms

In FERN; current state-of-the-art algorithms are included (look at table Three of them are
exact algorithms (which means that they create the Markov trajectory reaction by reaction);
the threww TauLeaping procedure are approximate algorithms which should be faster (but
not for every type of network) but the produced results are not exact (if you can call the
results of Monte Carlo algorithms exact - more accurate would be "do not exactly match

the correct distributions”).

The tau-leaping algorithms are all based on the modified tau-leaping procedure proposed
by Cao et al. [§] which avoids the problem of negative populations observed for the origi-
nal tau-leaping procedure. Basically, the three implementations differ only in the way the

12

error is bound (see [9] for details). The error is bounded either by the sum of all propen-
sitly functions (TauLeapingAbsolute BoundSimulator), the relative change in the individual
propensity functions (7TauLeapingRelativeBoundSimulator) or the relative changes in the
molecular populations (TauLeapingSpeciesPopulationBoundSimulator)

The hybrid method by Puchalka and Kierzek [12] dynamically partitions the system during
the simulation into “slow” reactions which involve only small molecule numbers and “fast”
reactions which involve large molecule numbers. The slow reactions are then simulated using
an exact SSA while the fast reactions are simulated with approximate tau-leaping. Our
implementation of the hybrid method uses the more efficient enhanced Gillespie algorithm
instead of the Gibson and Bruck algorithm proposed by Puchalka and Kierzek.

You can register a PrintWriter object to a simulator. Once you do this, the string represen-
tation of each observer is printed when a simulation has finished.

If you have to simulate reactions networks with triggers (e.g. a cell division divides each
species population by 2 at some moment, cell growth...) you can implement your own ob-
server and invoke setAmount(species) or setVolume(volume) of the Simulator object. In this
case, you should consider that each propensity has to be recalculated (which is done auto-
matically by each implemented simulator). GillespieEnhanced and even more GibsonBruck
will be slower than GillespieSimple whenever you invoke one of these methods!

4.3 Observer

As mentioned before, the framework uses an observer system to reflect the progress of the
simulation. Once a observer is registered at a simulator and the simulator is started, it will
invoke several methods of the observer during a simulation (see table [3| and figure 4)).

The methods start, finished, step and activateReaction are handled by the simulator base
class, theta has to be invoked by the implementing algorithms, since its invocation depends
heavily on the algorithm (if you want to implement your own, keep that in mind). If an
Observer wants to called at a specific timepoint during a simulation (e.g. in order to record
amounts of molecular species), it can register this timepoint 6 at the simulator. If 6 is
crossed, the method thetaFEvent is invoked by the Simulator and the corresponding observer
can react (e.g. record the amount of some species). This task could also be handled by the
method step and checking for the timepoint. We suggest to prefer the theta method because
the step method does not guarantee a complete record when the simulation algorithm leaps
across several reading points.

There are several different types of observers, some can handle repeated simulations and
present average results, some cannot, some produce gnuplot data some do not. For more
information refer to to table 4] and the fern.simulaton.observer package in the javadoc.

13

Simulator

Observer
initialize()
Observer.started () started()

while (SimulationController.goOn())

. Cbserver.fireReaction ()

AmountManager.fireReaction ()

fireReaction () fireReaction ()

Observer . finished() finished()

Observer.step() I
various SSA performstep () I
thetaBEvent () Observer , thetaEvent () l thetaEvent ()

Observer.print() print()

Figure 4: Simulation cycle and when Observer methods are invoked

start invoked after initialization of the algorithm to give the observer the
chance to (re)initialize itself

nishe invoked right after the SimulationController stops the simulation. -
finished invoked right after the SimulationController stops the simulati Ob
servers can clean up resources, for instance.

step invoked every time after the SimulationController tells to go on and
before the simulation algorithm fires reaction(s)

activateReaction invoked when a reaction channel fires (but before the amounts are
changed)
theta invoked when a certain timepoint is crossed; the specific timepoint is

defined by calling Simulator.register Theta

Table 3: Observer methods

14

AmountInterval Observer

The probably most prominent observer, tracks the
amount of molecules repeatedly after intervals. Can
handle repeated simulations and will then return aver-
aged trends.

MultiAmountinterval Observer

Similarly as the AmountIntervalObserver, but instead
of recording the amount of the species individually, it
records the sum of the specified molecules. This is useful
if you have to split a logical entity such as mRNA into
e.g. mRnaFree and mRnaDuringTranslation, but you
want to record the total amount of mRna.

ReactionInterval Observer

Similarly as the AmountIntervalObserver, but instead
of recording the amount of molecular species, it records
firings of reactions.

AmountAtMomentObserver

Record the amount of some molecule species at one cer-
tain moment. When simulations are repeated, it calcu-
lates histograms for that moment and for each species.

RandomNumberGeneratorCallObs

Records, what kind of random numbers are drawn dur-
ing simulation. Since efficient random number genera-
tion is important for stochastic simulation, this observer
can be useful for performance measurements.

FireTypeObserver

Track the types of firings (exact, tau leaping), which
can be interesting when using the tau leaping procedures
(when they avoid negative amounts, they use some exact
steps [§], this can be a performance bottleneck for these
algorithms) or of course the hybrid algorithm.

InstantOutputObserver

Prints out every event that the simulatr reports to the
observer.

Table 4: Built-in observers

15

5 Gnuplot

As mentioned above, some observers produce gnuplot data. You can use this data directly
from java via the GnuPlot class. The observers provide a method toGnuplot, which adds
the current data (either average data or recent data) to a gnuplot object. With a gnuplot
object, you can:

retrieve the gnuplot data as String or save it to a file

get the plot command

plot the data by calling gnuplot from java

retrieve the plot as image object or save it to a png file

show the plot in a JFrame

It is possible to add custom gnuplot commands to change the look of the plot as well as to
pass additional styles for the plot command (for more details refer to the javadoc and the
gnuplot documentation).

The data is managed by Axes objects. Each gnuplot object has a list of Axes objects, each
Axes object can have a list of additional Axes objects and each Axes objects has one to
many columns. Thus data can be combined in many different ways:

e add it to different gnuplot objects: different data files and different plots are created
(e.g. one observer records the amount of some species, another one the step sizes of
the leaps, and you want different plots)

e add it to the same gnuplot object as separate Axes objects: different data files are
created but only one plot (if you want the amount trend and the step sizes in one plot)

e add one Axes object to another one: only one data file and hence one plot is created
(this is only possible, if the number of rows is equal; it is reasonable, if you have already
a Axes object containing a x axis and some value axis and you want to add just another
value axis)

6 Analysis

If you want to take a look at your networks analytically (e.g. perform algorithms based
on a breadth/depth first search), you should use the AnalysisBase class. Since the network

16

class only knows the neighbourhood of reactions and not of species (which is not necessary
for simulations), it creates the corresponding index structures for you and provides generic
implementations of breadth/depth first searches (for customization refer to the javadoc).

Two analysis algorithms are included in the framework:

e Shortest paths: By using the bfs the shortest paths starting from some source species
to each other species is computed.

e AutocatalyticNetworkDetection: By using two modified bfs the autocatalytic subset
of a network is detected [I].

7 Stochastics

An important feature of FERN is the use of one central class for handling random numbers
(which is fundamental for stochastic algorithms). This has several advantages:

e If a new, faster random number generator has been developed, it can easily be used
for the whole framework.

e By setting the seed value for the random number generator explicitly, you are able to
make the simulation deterministic and e.g. reproduce some interesting trajectory of
the Marcov Chain

e It is possible (and implemented) to count the number of random number generation
of different distributions (which have a significant influence on the performance)

8 Examples

If you plan to use or extend FERN, the first step should be to look at the examples. Some of
them emphasize technical aspects (gnuplot system - MichaelisMentenKinetic, MapkBenchmark;
observer - LacYComplete, AutocatalyticNetworkExample), some of them show differences
of the algotithms (DecayingDimerizingInteractive, DecayingDimerizing, Irreversiblelzomer-
ization) and some of them are supposed to reproduce earlier published results of other
implementations (LacZ, LacYComplete, DecayingDimerizingHistogramDistances, LacY His-
togramDistances). Do not forget to match the paths within the code to your
example directory! You can find the examples in the package fern.example (just look into
the code, they are commented in detail):

17

8.1 MichaelisMentenKinetic

The most basic example uses the famous enzyme kinetics equation by Michaelis and Menten
S+E=FES—P

to introduce fundamental loading and repeated simulation of reaction networks. Further-
more, some advanced usage of the Gnuplot class is presented: Two plots are created from
the data of one Observer, one showing the average trend curve over all trajectories, the other
showing each trajectory individually. Both plots are updated after each simulation run.

Network file: mm.xml
Point of interest: Basic loading and simulation, creating average and individual trend
plots, customize plots

8.2 DecayingDimerizing

Demonstration of performance and accuracy differences of the different simulation algo-
rithms. The reaction network proposed in [4] are used to calculate histograms and the
histogram distances [9] of the amount of some molecular species at a special time point in
order to compare results of different algorithms. The Interactive example reproduces Fig. 3
of [6] and shows the gain of accuracy when using a species bounded tau leaping procedure
without loss of performance. The HistogramDistances reproduces the values of Fig. 10 of
[§]. Running it the first time will cost some time, the results are saved and then loaded in
further runs. The same holds for Plots, which produces the same plots as Interactive.

Network file: decaydimer.xml
Point of interest: accuracy of tau leaping, performance differences

8.3 Irreversiblelzomerization

Uses the irreversible-isomerization model proposed in [4] to show effects of different choices
for epsilon. The number of leaps is slightly greater than proposed in the paper because in
the paper tau wasn’t bound by sigma yet (yielding sometimes to lower tau and hence more
leaps).

Network file: isomerization.xml
Point of interest: influence of the choice of tau on the accuracy of tau leaping

18

8.4 LacZ/LacY

The LacZ/LacY model of procaryotic gene expression proposed by [5 [7] is simulated in
different ways: In LacYComplete, the full model (containing LacZ and LacY regulation) is
simulated for one full cell cycle. Since it is very time consuming, the simulation progress is
shown online in the console. In LacZ, Fig. 1A of [f] is reproduced, which shows the amount
of LacZ over several cell cycles. LacYHistogramDistances reproduces the values of [§] Fig.
4, which represent histogram distances of the different procedures regarding the simulation
of time 1000 to 1001 of the cell cycle.

Network file: lacz.xml, lacy.xml, lacy1000.xml
Point of interest: real life example, cell growth / division realized by an Observer

8.5 MapkBenchmark

Use the signal transduction pathway network of the epidermal growth factor proposed by
[10] to introduce the benchmark system. For more information please refer to the javadoc.

Network file: mapk.xml
Point of interest: Benchmark system

8.6 AutocatalyticNetworkExample

Here, the evolution of a reaction network as proposed by [I] is performed. Then, the auto-
catalytic subset [I] is determined and extracted. This subnet is then simulated to examine
the dynamic behaviour of autocatalytic reaction networks. For more information about the
evolution and the detection algorithm, please refer to the javadoc.

Point of interest: Network evolution, extraction of subnets

8.7 Dsmts

Perform a series of tests (refer to http://www.calibayes.ncl.ac.uk/Resources/dsmts). You
have to specify the path to the unpacked dsmts archive. The method test produces one line
of text containing the test results for each species in the model. If specified, it also produces
4 plots:

e average trend curve of the simulated trajectories and the analytical determined

19

http://www.calibayes.ncl.ac.uk/Resources/dsmts

e stddev trend curve of the simulated trajectories and the analytical determined

e deviation of the simulated averages to the real ones (the z values described in the dsmts
user guide)

e deviation of the simulated stddevs to the real ones (the y values described in the dsmts
user guide)

Point of interest: correctness of the algorithms and proper sbml loading

8.8 start.sh

Create species population trends by command line. For command line options, start it
without parameters to get a usage message.

20

A FernML example

<fernml version="1.0">

<listOfSpecies>
<species name="S" initialAmount="100">
<listOfAnnotations>

<annotation name="Description”>substrate</annotation>
</listOfAnnotations>
</species>
<species initialAmount="20" name="E’ />
<species initialAmount="0" name="P” />
<species initialAmount="0" name="ES” />
</listOfSpecies>
<listOfReactions>
<reaction kineticConstant="5.0">
<listOfReactants>
<speciesReference name="S" />
<speciesReference name="E” />
</listOfReactants>
<listOfProducts><speciesReference name="ES” /></listOfProducts>
</reaction>
<reaction kineticConstant="4.0">
<listOfReactants><speciesReference name="ES” /></listOfReactants>
<listOfProducts>
<speciesReference name="S” />
<speciesReference name="E” />
</listOfProducts>
</reaction>
<reaction kineticConstant="1.0">
<listOfReactants><speciesReference name="ES” /></listOfReactants>
<listOfProducts>
<speciesReference name="P” />
<speciesReference name="E” />
</listOfProducts>
</reaction>
</listOfReactions>
</fernml>

21

B FernML specifications

If you want a formal description of FernML, the XML Schema file FernMLSchema.xsd is
everything you need. But since XML schema files are not dedicated for human readability,
you find here a summary about FernML.

The classes of FernML are

e Fernml: root of the XML document tree containing a <listOfSpecies> and a <listOfReactions>
e Species: with two mandatory attributes

— initialAmount of the default XML type float
— name of the default XML type string

e Reaction: with two lists of speciesReferences and two attributes

— kineticConstant (flaot, mandatory)

— kineticConstantReverisble (float, optional)

e SpeciesReference: with the mandatory attribute name; a Species object with the same
name has to exist within the <listOfSpecies>, which is checked automatically by the
XML schema

e FernBase: base class for the Fernml, Species and Reaction to allow the optional
<listOf Annotations>

e Annotation: with the mandatory attribute name (string) and the annotation as inner
text

FernML was designed to represent a chemical reaction network as simple as possible. First,
you have to define the molecular species as Species objects within the <listOfSpecies>.
Second, you have to give the reactions’ stoichiometry by the <listOfProducts> and a
<listOfReactants> within a Reaction object. Look at the example above and consider

the reaction
S+F— ES

The reactants are defined as speciesReference S and E, the product as speciesReference ES.
SpeciesReferences only reference previously (in the <listOfSpecies>) defined Species objects,
so no other attributes than the name make sense.

In order to make annotations possible for the various network entities, the classes FernM]I, Re-
action and Species derive from a class FernBase which allows an optional <listOf Annotations>
child tag for these classes.

22

http://www.bio.ifi.lmu.de/FERN/download/FernMLSchema.xsd

C SBML support

At the moment, SBML version 2 levels 1 - 3 are supported, but only follwing branches of an
SBML file are read:

e listOfCompartments: for using the volume as a parameter in formulas

listOfSpecies:

— the flag hasOnlySubstanceUnits has to be set for each species
— initialAmount instead of initialConcentration has to be used
— the flag BoundaryCondition is supported

e listOfParameters: are read and can be overridden by local parameters within a reaction
branch

e listOfReactions: fully supported

o listOfEvents: fully supported, but if events are supposed be triggered during simula-
tions, you have to invoke the method registerEvents of your SBMLNetwork. This has
to be done because event handling is achieved by observers which have to be registered
at the simulator.

Other tags like initial Assignments, Rules, Constraints are not supported at the moment and
an exception is thrown if you try to load a network containing one of these. If you want to
do the simulation anyway, you can use the ignoreExceptions flag of the second constructor
of SBMLNetwork.

23

References

[1] Kauffmann S.A, The Origins of Order: Self-Organization and Selection in Evolution.
New York: Oxford University Press, (1993)

[2] Gillespie D.T., J. Comput. Phys. 22, 403 (1976)

[3] Gibson M.A. and Bruck J., J. Phys. Chem. 104, 1876 (2000)

[4] Gillespie D.T., J. Phys. Chem. 115, 1716 (2001)

[5] Kierzek A.M., Bioinformatics 18, 670 (2002)

[6] Gillespie D.T. and Petzold L., J. Chem. Phys. 119, 8229 (2003)

[7] Tian T. and Burrage K., J. Chem. Phys. 121, 10356 (2004)

[8] Cao Y., J. Chem. Phys. 124, 044109 (2006)

[9] Cao Y. and Petzold L., J. Comp. Phys. 212, 624 (2006)
[10] Lee D.-Y., Metabolic Engineering 8, 112-122 (2006)
[11] A. Finney and M. Hucka., Biochem. Soc. Trans. 31, 1472-1473. (2003)
[12] Puchalka J. and Kierzek A.M., BIOPHYSICAL, 86, 1357 (2004)
[13] Funahashi A. Biosilico, 1, 159-162 (2003)

24

	Overview
	Installation and first steps
	Windows users
	Eclipse or other IDEs

	File formats
	FernML
	SBML

	Framework structure
	Network
	Simulator
	Observer

	Gnuplot
	Analysis
	Stochastics
	Examples
	MichaelisMentenKinetic
	DecayingDimerizing
	IrreversibleIzomerization
	LacZ/LacY
	MapkBenchmark
	AutocatalyticNetworkExample
	Dsmts
	start.sh

	FernML example
	FernML specifications
	SBML support

